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When m different species of small particles are dispersed in fluid the existence of a 
(small) spatial gradient of concentration of particles of type j is accompanied, as a 
consequence of Brownian motion of the particles, by a flux of particles of type i. The 
flux and the gradient are linearly related, and the tensor diffusivity 0, is the 
proportionality constant. When the total volume fraction of the particles is small, 
Dij is approximately a linear function of the volume fractions q52, ..., $m, with 
coefficients which depend on the interactions between pairs of particles. The complete 
analytical expressions for these coefficients given here for the case of spherical 
particles are a linear combination of the second virial coefficient for the osmotic 
pressure of the dispersion (measuring the effective force acting on particles when there 
is a unit concentration gradient) and an analogous virial coefficient for the bulk 
mobility of the particles. Extensive calculations of the average velocities of the 
different species of spherical particles in a sedimenting polydisperse system have 
recently been published (Batchelor & Wen 1982) and some of the results given there 
(viz. those for small PBclet number of the relative motion of particles) refer in effect 
to the bulk mobilities wanted for the diffusion problem. It is thus possible to obtain 
numerical values of the coefficient of $k in the expression for D,, as a function of 
the ratios of the radii of the spherical particles of types i ,  j and k. The numerical values 
for ‘hard ’ spheres are found to be fitted closely by simple analytical expressions for 
the diffusivity ; see (4.6) and (4.7). The dependence of the diffusivity on an interparticle 
force representing the combined action of van der Waals attraction and Coulomb 
repulsion in a simplified way is also investigated numerically for two species of 
particles of the same size. The diffusivity of a tracer particle in a dispersion of different 
particles is one of the many special cases for which numerical results are given ; and 
the result for a tracer ‘ hard ’ sphere of the same size as the other particles is compared 
with that found by Jones & Burfield (1982) using a quite different approach. 

~ e . J a ~ .  1/* / 1 3 7 , yp 4 6 7- 4 d l  

1. Introduction 
This is a sequel to some earlier papers on diffusion and sedimentation of small 

particles suspended in fluid, and we begin with a brief recapitulation of this previous 
work. 

Gradient diffusion in a monodisperse system 

Some years ago in a paper on Brownian diffusion of particles in fluid (Batchelor 1976) 
I showed that the mean particle flux down a small concentration gradient due to 
diffusion is the same as if each of the particles is acted on by a steady applied force 
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156 G.  K .  Batchelor 

and the fluid is force-free, where n. is the local mean number density of particles, $ 
is the particle volume fraction, and ,u is the local chemical potential of a particle. The 
axes of reference here are such that the mean flux of volume, of particles and fluid 
together, across any geometrical surface in the dispersion is zero. The mean particle 
velocity (U) resulting from this fictitious applied force (sometimes termed a 

'thermodynamic force ') is proportional to F, since F represents a small perturbation 
of the equilibrium state of uniform concentration. Hence we may write (U) as 

* * 

where B is a concentration-dependent bulk mobility coefficient, a is a length 
characteristic of a particle, and 7 is the viscosity of the suspending fluid. The tensor 
diffusivity D representing the effect of Brownian motion is defined by the equality 
of the two expressions for the flux of particle number (f ), viz. 

f = n ( V > = - D * V n ,  

where I denotes the unit second-rank tensor. 
This expression is valid for arbitrary values of $. The only restriction is that, as 

in all non-equilibrium transport theories, the magnitude of the intensity gradient (Vn) 
must be small in some sense. 

When $ + 1, both $(a,u/i3$)p,T and B($)  may be expanded in series of positive 
powers of $, and coefficients of $q in these series depend on interactions of a group 
of q+ 1 particles. We may write 

and 

where p and S depend on interactions between pairs of particles (p being related to 
the second virial coefficient for the osmotic pressure of the dispersion). Then 

where 

is the classical expression for the diffusivity of a very dilute dispersion of independent 
spheres of radius a first derived by Einstein. 

It is known from standard methods of evaluating the configuration integral for a 
dispersion in equilibrium (Hill 1960) that 

p = s  
in the case of spheres which are rigid and exert no force on each other when they 
are not touching (so-called 'hard' spheres). It is also known from an analysis of the 
problem of gravitational sedimentation in a monodisperse system of spheres of this 
same type (Batchelor 1972) that 

S = -6.55. 

t /3 as defined here is minus the quantity denoted by /3 in the previous paper on diffusion 
(Batchelor 1976). 



Diffusion in a polydisperse system of interacting spheres 157 

Thus it was found (Batchelor 1976) that 

D = Do)( 1 + 1.454) 

correct to order 4, for rigid spheres which exert no force on each other except when 
touching. 

There is no difficulty in principle in calculating the values of 0 and S, and thereby 
the coefficient of $ in (1.8), for spheres which do exert a (central) force on each other 
when the distance between their centres exceeds 2a. Numerical values for a particular 
form of the interaction potential are given in $5. 

Gradient diffusion in a polydisperse system 
In the same paper (Batchelor 1976) I gave some of the general formulae needed for 
the case of a polydisperse system in which there are m different species of particle, 
the properties of particles of species i being denoted by ai,vUi,nd,#,,pLi (where v2 
is the particle volume, and p ,  depends on n1,n2, ... and not on nZ alone). The mean 
flux of particles of any species due to diffusion in the presence of gradients of 
concentration of all species was shown to be the same as if each of the particles of 
species i is acted on by a steady applied force 

m 

I-1 
and the fluid is force-free, where $ = and 

(1.10) 

Again the axes of reference are such that the mean flux of material volume is zero. 

The applied forces F,, F,, . . . represent independent perturbations of an equilibrium 
state with isotropic structure and in place of (1.2) we have 

* *  

(1.11) 

where the bulk mobility coefficient B, depends on 
size ratios typified by 

42, . . . , $m and on the particle 

h. .  = 3. 
ai 

23 

The diffusivity 0, giving the flux of number of particles of species i due to the 
existence of a gradient of concentration of species j in a polydisperse system is defined 

fi = n, (U,) = - X D,*Vn,, 
m 

I -1  
(1.12) 

bY 

and is found by substituting (1.9), (1.10) and ( 1 . 1 1 )  in (1.12) to be 

This expression is valid for arbitrary values of the particle volume fractions #2, . . . , 

When $ 4 1 ,  pi - kTlog $$ and B,, may be replaced by the first few terms of their 
expansions in powers of $k. Terms of the first degree in q5k in these series represent 

$rn. 

6-2 
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the effects of interactions between pairs of particles. We shall see in the next section 
that in place of (1.4) we have 

(1.14) 

where Stj = 1 when i = j and zero otherwise, and pij reduces to the constant /3 in (1.4) 
when i = j. 

The bulk mobility coefficient B, describes the mean velocity of an i particle 
resulting from the application of a steady force to each j particle in the presence of 
force-free particles of species k ( + i or j ) ,  and the relevant pair interactions (viz. those 
between two particles of which at  least one is acted on by a force) in which an i particle 
takes part depend on whetherj = i o r j  # i .  I f j  = i ,  the relevant pair interactions 
are (i) those between two i particles on each of which a force acts, the contribution 
to B. .  then being the same as for a monodisperse system with volume fraction dr, 
and (11) those between an i particle on which a force acts and a force-free k particle, 
the number of such interactions being proportional to $k, where k takes all values 
from 1 to m excluding i ;  and i f j  =+ i ,  the relevant pair interactions are those between 
a force-free i particle and a j particle on which a force acts, the number of such 
interactions being proportional to $ j .  Hence we may write 

B, = s,, ( I+ k-1 z K ~ ~ $ ~ ) + A , ” K ~ ~ $ , + O ( ~ ? ) ,  

a?. 

m 
(1.15) 

where the coefficients Kij and Krj depend only on A, and 

Kii+ K& = S ( i  = 1,2, ..., m). (1.16) 

Substitution of (1.14) and (1.15) in (1.13) then gives, after some algebra, 

(1.17) 

correct to order $, where Die) is the diffusivity of independent particles of species i .  
The diagonal element of the diffusivity matrix is thus 

and the off-diagonal element is 

(1.18) 

(1.19) 

The relation (1.17) holds for any particle shape provided A,, the ratio of the 
characteristic lengths ai and aj,  is interpreted as (wj/vi)i. In the important case in 
which the i-particles have much smaller volume fraction than any other species, so 
that each i-particle is effectively isolated from its fellows - being then a ‘tracer’ 
particle - we may put ${ = 0 in (1.1 8) and (1.19) to obtain 

Dii = Die) (1 + Z Kik &), D,, = 0. (1.20) 

An explicit expression for pij in terms of the potential of the force exerted between 
two spherical particles of radii a, and aj can readily be derived using the methods 
developed in statistical mechanics. Numerical values of the bulk mobility coefficients 
K& and K;, on the other hand are difficult to obtain accurately, and none were 

k(9i) (i+n 
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available in 1976. However the position has now changed because in some recent work 
on sedimentation of spheres in a dilute polydisperse system (Batchelor 1982; 
Batchelor & Wen 1982) values of the related sedimentation coefficients have been 
calculated for many values of the parameters on which they depend. 

The purposes of this note are to show how this recent work on sedimentation may 
be used to obtain complete analytical expressions for the mobility coefficients Kij and 
K& entering into the expression (1.17) for the diffusivity and to present some 
numerical values of the diffusivity of each species of spherical particle in a dilute 
polydisperse system. 

2. The 'second virial coefficient' for a polydisperse system 
Here we obtain an expression for the constant Pij in (1.14) representing the effect 

of interactions of pairs of particles on the thermodynamic force. The derivation uses 
arguments to be found in text-books on statistical mechanics (see, for example, Hill 
1960, Landau & Lifschitz 1968 or McQuarrie 1973) and will be indicated briefly for 
the benefit of fluid dynamicists not familiar with such arguments. Pil is (a numerical 
multiple of) the 'second virial coefficient ' giving the correction to the perfect-gas law 
due to the finite size and range of interaction of the gas molecules, or to the 
ideal-solution expression for the osmotic pressure in solutions of non-electrolytes. In  
most text-books Ptl is specified only for identical particles. 

The starting point is the following standard expression for the Gibbs free energy 
of a volume V of the dispersion, in equilibrium, containing No(  $- 1)  fluid molecules 
each of volume uo and Xi( 9 1 )  spherical particles each of volume vi (i = 1,2,  . . . , m) : 

m 

i-1 
G = No lclo + X Ni(llri + kT log $ J e )  + kT log Qkl, (2.1) 

where 
N = C N i ,  V = N O ' U O + X N ~ V ~ ,  $ i = N , v , / V .  

i i 

In (2.1) Po is the chemical potential (i.e. the free energy per molecule) of the fluid 
in the pure state, and y i t ,  like Po, is a function only of the temperature and pressure. 
The effect of interactions between the particles is contained in QN, the configuration 

where @(x1, ..., x,) is the potential energy of the forces exerted between the N 
particles at positions x,, . . . , xN and the integration is over the volume V in each case. 
An expression for G of the same form (2.1) applies to a solution of solute molecules 
and also to the molecules of a gas and $i being zero in this latter case). The fact 
that the colloidal particles of interest here are much bigger than molecules is of no 
consequence. The chemical potential of the particles of species i is defined as 

and the coefficient of Vnj in the expression (1.10) for the thermodynamic force can 
then be determined when Q N  is known. 
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In  the limit N/N,+O, the particle interaction energy CD is small for all except a 
negligible fraction of the possible particle configurations represented in (2 .2)  and it 
is evident that QgN + 1 ,  log Q g N  + O .  When N / N o  4 1 ,  log Q g N  is a small quantity 
of order N / N ,  which represents the effect of interactions between isolated pairs of 
particles (and so must involve two species symmetrically), the correction term of order 
IP/x represents the effect of interactions between particles in groups of three, and 
so on. Bearing in mind that G must be a homogeneous function of the first degree 
in No, N , ,  . . . , we see that log &;;'IN can be written as 

1 N.N.4n:  a +a 
log Q$lN = - Z Z Pi5 &$-% (YT + O ( N 2 / x )  

2 1-1 1-1 

when N / N ,  Q 1 ,  where a$ = (3vi/4n:)4. The corresponding approximate expression for 
pi is 

where n = N /  V.  This yields (1 .14)  on differentiation with respect to $*. 
It can be seen by inspection of (2 .2) ,  and confirmed from the rigorous arguments 

given in the text-books, that when the particles in a dilute dispersion are all spheres 
of species i ,  and only pair interactions are allowed for, 

where !Dii(5) is the potential of the (central) force exerted between two spheres of 
radius ai with distance sat between their centres (and Qtl = 00 when 0 < 5 < 2 in the 
case of rigid spheres). Then if a single spherical particle of speciesj is introduced into 
this dispersion of particles of species i, the new value of QN is obtained by multiplying 
the old value bv a factor 

Y 

1 +3${ rsy s," {exp (2)- 1 }  s2 ds 

(as may be seen by carrying out the integration with respect to this additional particle 
before the other N integrations in ( 2 . 2 ) ) ,  where s now denotes the distance between 
the two sphere centres divided by i(ut + a5) and Qi5 ( 5 )  is the potential of the force 
exerted between a sphere of species i and a sphere of species j. Comparison of (2 .6)  
and (2.7) with (2 .4)  shows that both correspond to 

in which i and j may take the same or different values. 

0 < 5 < 2 ,  this reduces to 

as quoted in fj 1 .  And in the case of rigid spheres of radii at and u5 which do exert 
a force on each other at positions for which 5 > 2 we have 

In the case of 'hard' spheres for which CDti = 0 when 5 2 2 and Qt5 = 00 when 

Pi5 = 8 

pij = 8+3S,"{l-e~p($))5~dfi. -@.. 

Values of pi, for some particular forms of the function QU(s )  in the range s 2 2 are 
given in $ 5 .  
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3. The identification of the bulk mobility coefficients with sedimentation 
coefficients for a dilute polydisperse system 

by the two relations (1.1 1) and (1.15), which together become 
The bulk mobility coefficients Kij and Kij whose values we seek here are defined 

In this relation, 4 denotes a steady force applied to each of the particles of species 
i, where i takes all values from 1 to m, and ( U , )  is the mean velocity of a particle 

of species i generated by these steady forces. I$ is a thermodynamic force which 
generates the same particle flux as the actual Brownian diffusion down the concen- 
tration gradient, and it must have small magnitude if our assumption that the 
diffusive flux is linear in the concentration gradients is to be valid. 

Now in the sedimenting system in which particles move under the action of real 
applied forces having different values for different species, the effect of the applied 
forces is a small perturbation of the system, with consequent linearity of the mean 
particle velocity in each of the applied gravitational forces, only for small values of 
the PBclet number (a measure of the relative magnitude of effects of particle 
'convection' and diffusion on the statistical structure of the dispersion, that is, in 
this case of a dilute dispersion, on the pair-distribution function). For an interaction 
between an i and a.i particle the PBclet number of the relative motion of the two 

* 

particles may be defined as 
p.. = t(ai+aj)lUj")- w)l 
23 Die) + Djo) , 

where qo) and are the velocities of isolated i a n d j  particles moving under the 
action of the applied forces qo) and f J o )  and Die) + Djo) is the relative diffusivity of 
the two particles when they are far apart.? (The value of ej for the diffusive system 
is given, aside from factors of order unity, by 

and is small when the change in particle concentration of each species over one particle 
radius is a small fraction of the concentration - this is the quantitative form of the 
condition for the diffusive flux of particles to be proportional to the concentration 
gradients). And in the sedimenting system the forces applied to the particles of the 
different species are parallel. 

In the first of the two recent papers on sedimentation in a dilute polydisperse system 
(Batchelor 1982), analytical formulae for the sedimentation velocities of the different 
species were given. It was shown there (see (6.14) in that paper) that for pair 
interactions with ej Q 1 the mean velocity of particles of species i is given by 

where q0) denotes the external force applied to each particle of species i and the 

t Note that there is no dependence of the sedimentation velocity to order I# on the PBclet number 
in the case of a monodisperse system of spheres because two identical spheres acted on by identical 
forces have zero relative velocity, regardless of their vector separation, and the PBclet number for 
a pair of particles is zero for any magnitude of the applied force. 
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sedimentation coefficients Sii and Slj are independent of the applied forces. Explicit 
expressions for Xij and Sii in the case of spherical particles were found. The practical 
application of the results of that paper is to systems sedimenting under gravity with 
applied forces F:), Z?f", . . . which are parallel, and parallelism of the applied forces 
was essential for validity of the results for PBclet numbers which are not small, but 
at small PBclet number @), q0), . . . are independent perturbations of the system with 
linearly additive effects and the expressions obtained for Slj and Sli are valid for 
arbitrary directions of the applied forces. 

The expression (3.1) describes the mean velocity of a particle of species i when 
steady forces of small magnitude and arbitrary direction representing the diffusive 
consequences of concentration gradients are applied to the particles of the various 
species. Likewise the expression (3.3) describes the mean velocity of a particle of 
species i when steady external forces (representing gravity although no analytical use 
is made of that fact), of sufficiently small magnitude to make the PBclet number small, 
are applied to the particles of the different species. Hence we may identify the 
expressions for the mean particle velocity in the two systems, showing that 

(3.4) K' = S!. K'c. = S!' ij 23' a3 a j .  

The diffusivity tensor Dij is then obtained, correct to order $, by substituting the 
known expressions for S;, and S& in place of Kij and Kij in (1 .17) .  Henceforth the 
identification (3.4) will be accepted without further comment. 

It was noted (Batchelor 1982) that each of the sedimentation coefficients S&, Slj 
is the sum of three contributions with different physical meanings and may 
conveniently be written as 

(3.5) S;;" = S;j"(G) + #!:"(I) + ,S"*"(B). 
a3 23' 

The contributions 8JG), S!'JG) due directly to gravity (directly, meaning 'for given 
structure of the dispersior? ; there is also an indirect effect of gravitational forces, 
through their influence on the statistical properties of the configuration of spheres) 
are given by 

#.ItG) = (-) 1+h,, j, (A,,  + 2B1, - 3) exp (T) - Oij s2 ds, 

2hii 23 

where A,,,  A,,, A,,, B,,, B,,, B,, are the two-sphere mobility functions of 
s( = 2r/(ai+aj), where r is the distance between the centres of an i and a j  sphere) 
and also depend on hij( = aj/ai) .  

The contributions &3(I), S&o) due directly to the interactive force exerted 
between an i and a j  particle, which is represented by the potential cDir (defined for 
s > 2 - within radii ai and ai the material of the two spheres is assumed to be rigid), 
are given by 

Here Q' and Q" are functions of s and hij representing the perturbations of the 
Maxwell-Boltzmann form of the pair-distribution function due to the applied forces 
q0) and qo) respectively; see the appendix for more details. It should be noted that 
Q' and Q" are normalized quantities of order unity. 
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are due directly to Brownian diffusion and are given The contributions SijB), 

As explained in the paper (Batchelor 1982), the interparticle force and Brownian 
diffusion make direct and non-negligible contributions to the mean velocity of the 
particles of one species in consequence of the departure from spherical symmetry of 
the pair-distribution function for i and j particles. The departure from spherical 
symmetry is small, being of order Sj, but the contribution to the mean particle 
velocity is a product of the Brownian diffusivity and this departure from spherical 
symmetry and is not an algebraically small quantity. The existence of this direct 
contribution due to Brownian diffusion was overlooked in my first attempt to 
generalize the formulae for the dependence of the diffusivity on particle concentration 
to the case of a polydisperse system (Batchelor 1976). 

For further explanation of the meaning of the symbols occurring in the expressions 
for S& and S;, and of the physical processes underlying the relations reference should 
be made to Batchelor (1982). In  $34 and 5 we shall make use of the numerical values 
of Sij and S;, given in the second of the two recent papers on sedimentation in a 
polydisperse system (Batchelor & Wen 1982). 

From this point onwards we shall denote aj/ai by h without the suffixes. 

4. Rigid spheres with zero interaction potential 
Rigid spheres which exert no force on each other when not touching (i.e. QY = 0 

for s > 2) provide a simple case which is of some practical interest and for which a 
fairly complete set of numerical results is available. For this case the diffusivity is 

l + h  
S!(G) 23 = -(=) J2 (3-A1,-2B,,)s2ds, 

#!‘IG) = -(T) 1 + A  
23 I2 (g-A12-2B,  s2ds-(A2+3h+1), 

O0 3 

and S;jB), S;jB, are given by (3.9) with @,j = 0. 
Numerical values of SJG), S;jG), SijB) and S;(”) have been calculated by Batchelor 

& Wen (1982) for a number of different values of A ,  and are reproduced in table 1. 
These numerical values were found from accurate data for the two-sphere mobility 
functions and should be correct to within T0.01. Table 1 and figure 1 show the 
corresponding values of K;, and K;, + h2 + 3h + 1 as functions of A. In  the earlier paper 
on diffusion (Batchelor 1976) the values of the two integrals in (4.3) and (4.4) (denoted 
there by C and D respectively) were given only for h = 1 .  
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A 

0 
0.125 
0.25 
0.5 
1 
2 
4 
8 

S p  

-2.50 
-2.34 
-2.24 
-2.09 
- 1.83 
- 1.45 
- 1.04 
- 0.69 

S p  

0 
0.03 
0.07 
0.15 
0.27 
0.35 
0.41 
0.45 

Ki 
-2.50 
-2.31 
-2.17 
- 1.94 
-1.56 
-1.10 
-0.63 
-0.24 

fJijG)+h2 + 3A + 1 

0 
0.01 
0.04 
0.12 
0.28 
0.48 
0.64 
0.75 

,y!’(B) 

0 
-0.01 
-0.04 
-0.12 
-0.27 
-0.47 
-0.68 
-0.88 

K&+A2+3A+1 

0 
0 
0 
0 
0.01 
0.01 

-0.04 
-0.13 

TABLE 1. The bulk mobility coefficients Kii ( = S&) and KG ( =  S j )  as functions of h ( =  uj/ai) for 
the case of rigid spheres with zero interaction potential. 

I I I I I I I 0.5 
t t + 1 2 4 8 0.5 

I I I I I I 1 I * 3 1 2 4 8 16 
h 

& 

FIGURE 1. Calculated values of the bulk mobility coefficients Ki,, KG as functions of A( = a,/at) for 
the case of rigid spheres with zero interaction potential. The broken lines are theoretical asymptotes. 

As was pointed out by Batchelor & Wen (1982), the calculated values of Kij in table 
1 are fitted well by the simple empirical relation 

2.5 K! =-- 
a* 1+0.6h‘ (4.5) 

It also appears that Klj+A2+3h+ 1 is negligible except when h + 1, and that it 
is then of small magnitude by comparison with h2 (see the last column of table 1 )  
and even smaller compared with the term Q(1+ in (1.17). Thus for most 
practical purposes i t  may be sufficient to put 

Krj = - (A2 + 3h + l ) ,  
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and to write (1.18) and (1.19) in the approximate forms 

0, - D{O)$,(h3+2A2) (4.7) 
c a * X  - 

for the case of rigid spheres with zero interaction potential, where h = aj/a, and 
h,k = ak/ai. 

It will happen often that a dispersion contains just two different species of particle, 
with the labels i and j, in which case the flux of number of i particles is 

f, = -D,,.Vn,-D,j*Vnj, 

if we use the approximate expressions (4.6) and (4.7). The flux of number o f j  particles 
is given by exactly the same expression with suffixes i and j exchanged and h replaced 
by A-l .  The roles of the i and j particles appear more symmetrically in the 
corresponding expression for the flux of particle volume, viz. 

q.  = aria? f. = - 2*5@j ) V$,- (1 + 2h-1) $, V & } .  (4.9) 
a 3 a a  6n7a, kT {-(1+1.45$t- 1 +0.6A 

The case of a 'tracer' particle of radius a, diffusing in a dispersion containing 
numerous particles of radius aj is of special interest in practice. This corresponds to 
a two-particle system for which $i 4 $,, and, as given in (1.20), 

(4.10) 

The numerousj particles are here acting solely as passive obstacles to the migration 
of an i particle, and the existence of a gradient of concentration of j particles has 
no influence on the flux of i particles. No divergent or non-absolutely convergent 
integrals arise in the expression for the corresponding sedimentation coefficient S;, 
because the relevant hydrodynamic interactions are weak. 

The graph of K& in figure 1 shows the way in which this tracer diffusivity varies 
with A. When A 4 1,  we have Kij = -2.5, as expected from the fact that the only 
consequence of the presence of very small j particles is to increase the effective 
viscosity of the fluid surrounding the migrating i particle by the factor 1 +!&I$ 
(Batchelor 1982). When A = 1 ,  we have K;, = - 1.56 (instead of the value - 1.83 
which was found in 1976 through my oversight of the contribution SJB) to the 
sedimentation coefficient Sij), showing the reduction in the diffusivity of a tracer 
sphere due to the presence in the dispersion of other spheres which differ from the 
tracer sphere only in some non-dynamical property. And as A+ 00 we have Kij+O, 
not simply from extrapolation of the values in table 1 but also from an analytical 
argument (Batchelor 1982). This last result for the diffusivity is a little surprising, 
and at first sight it might seem to conflict with the result, originally established by 
Maxwell (see Jeffrey 1973), that the diffusivity of solute molecules or heat in a medium 
is changed, by a factor 1 -$$, owing to the presence of fixed impermeable spheres 
distributed with statistical homogeneity and volume fraction $. However, there is 
no contradiction because in the present case the large spheres are free to move and 
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this lessens the resistance that they offer to the migrating small spheres. It is probable 
that the change in the diffusivity of a tracer particle due to the presence of force-free 
spheres of large radius aj is not zero to higher orders in $j, 

5. Rigid spheres with a non-zero interaction potential 
The spheres here are supposed to prevent any closer approach of their two centres 

than r = ai + ai and in addition to exert on each other a force given by the pair-wise 
interaction potential Qi j ( r )  which is defined for a$ + aj < r < co and approaches zero 
as r +co . Precise results for the effect of the interparticle force on the diffusivity in 
a dilute monodisperse system have not yet been presented, so far as I know, and since 
this case is of course relevant to diffusion in a polydisperse system, inasmuch as some 
interactions involve identical particles, we take it first. 

Gradient diffusion in a monodisperse system 

The diffusivity is given by (1.6), and we need to find the values of the virial coefficient 
p and the sedimentation (or bulk mobility) coefficient S.  For p we have, from (2.9), 

p = 8-3 jy { exp (-2) - 1 } s2ds, 

the suffixes to Q, being superfluous here. It will be convenient, following Batchelor 
& Wen (1982), to write 

a = 3J;{ exp(-&)-l}seds (5.2) 

and to note that, since the pair-distribution function in a diffusing (or sedimenting) 
dilute monodisperse system has the Maxwell-Boltzmann form, a$ is the mean number 
of particles to be found within a sphere of radius R( b a )  centred on a given particle, 
minus the number in a dispersion of the same concentration with @ = 0. It is 
understandable that this quantity a should be connected with the second virial 
coefficient for the chemical potential, because this virial coefficient is a measure of 
that part of unit volume of the dispersion from which an additional particle is 
excluded. 

For S we have an integral expression involving @(s)  and the two-sphere mobility 
functions (see formula (6.5) in Batchelor 1982). However, it  is unnecessary to consider 
this expression in detail because it was shown by Batchelor & Wen (1982) that, 
provided I @ I/kT falls to a small value when the gap between two spheres becomes 
as large as about a quarter of a sphere radius, S is given with reasonable accuracy 
by the approximate relation 

essentially because the mobility functions vary only slightly over the range of values 
of s for which exp ( -  @/kT) - 1 is different from zero. For instance, i t  was found, for 
a particular form of the function @(s) such that @ = 0 when s > 2.2, that the 
difference between the values of S given by (5.3) and the full expression is less than 
one percent. If there is electrostatic repulsion between charged particles with thick 
double layers, i t  may happen that @/kT is still significantly different from zero a t  
separations near s = 3, and in such cases it will be necessary to evaluate S from the 
full expression. No numerical results of this kind are yet available, although there 
would be no difficulty in obtaining them once the function @(s) is known. 

S = -6.55+0.44a, (5.3) 
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The expression (1 .6)  for the gradient diffusivity is 

D = D(O){1+(p+s)(b+O((b2)}  

and from (5.1), (5.2) and (6.3) we have 
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p+X z 1.45-00.56a, (5.4) 

giving a very simple relation between the diffusivity and the number of close particle 
pairs per unit volume resulting from the interparticle force. Positive values of a 
correspond to a mainly attractive interparticle force and more close pairs than in the 
case @ = 0; and this leads (a)  to a resultant attractive force on a particle towards 
a region of higher particle density and so to a smaller diffusivity, and ( b )  to  a larger 
bulk mobility (because close pairs fall under gravity more quickly than a well-separated 
pair) and so to  a larger diffusivity, effect (a) being numerically larger. And conversely 
for negative values of a corresponding to a mainly repulsive force and fewer close 
pairs than in the case @ = 0 (which can be thought of, so far as effect (a )  is concerned, 
as equivalent to  an increase in the volume of the region near one sphere from which 
another sphere is excluded by the repulsive force associated with the rigidity of the 
spheres). 

The value of a can be calculated from (5.2) if the interparticle force potential @(s) 
is known. Many combinations of an attractive van der Waals force and an 
electrostatic repulsion of charged spheres with double-layer screening occur in 
practice and could be considered. However, our purpose here is to provide illustrative, 
rather than comprehensive, values of the diffusivity showing the dependence on the 
interparticle potential, and only the simple family of potential functions constructed 
by Batchelor & Wen (1982) will be considered. According to this model of the 
interparticle force, 4p has different behaviours in three ranges. First, 

_ -  @ @a when 0 < g(=s-2) < go, 
k T - z ”  (5.5)  

corresponding to a strong electrostatic repulsion which prevents two spheres from 
approaching closer than a centre-to-centre distance of 2a + tau,  &a being a measure 
of the double-layer thickness. Second, 

when to < 5 < 0.2, 
A 

12g( 1 + 11.2f;ah; ) 
@ = -  

corresponding to  a van der Waals attraction between two spheres of radius a with 
a ‘retarded’ potential, and no electrostatic repulsion, outside the double layer, where 
A is the composite Hamaker constant, taken as equal to 1.25kT (the value for 
polystyrene spheres in water) in the calculations, and A, is the dispersion wave-length, 
usually assumed to be 0.100 pm, Third, 

@ = O  when [ > 0 . 2 ,  (5.7) 

corresponding to  the rapid decrease of the magnitude of the van der Waals potential 
which is known to occur when the gap between the surfaces of the two spheres 
approaches a sphere radius. to is a free parameter which may be varied between 0 
and 0.2 to  show the effect of variation of the thickness of the double layer which screens 
the Coulomb repulsion. For discussion of the reasons for choosing this simplified form 
of @(s) reference should be made to Batchelor 8: Wen (1982). 

Batchelor & Wen (1982) give numerical values of a calculated from ( 5 . 2 ) ,  with this 
assumed form for @(s), as a function of go for several values of a/&, and these are 
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reproduced in table 2. The corresponding values of the coefficient of q5 in the 
expression (5.4) for the diffusivity are shown graphically in figure 2 for several 
different sphere radii. Note that very small values of to, representing a very thin 
double layer and leading to values of u above about 12, are unlikely to be realistic 
because in such a case numerous multiple aggregates, as well as doublets, would form, 
in conflict with the assumed stability of the dispersion. 

It appears that the effect of the interparticle force on the diffusivity can be 
considerable, and that the coefficient of q5 in (5.4) varies in figure 2 from about - 3.5 
at small values of Eo with a = 0.1 pm to about +2.9 a t  Eo = 0.2. An attempt to predict 
values of the diffusivity accurately from the theory clearly requires a knowledge of 
the electrical conditions in the dispersion. We need to know that the height of the 
Coulomb barrier is large, as assumed in the above model, and we need to know its 
location. 

Some measurements of the sedimentation coefficient S for spherical particles whose 
double-layer thicknesses were known approximately have been reported in the 
literature, and Batchelor & Wen (1982) show that the values expected from the theory 
agree reasonably with those observed. Measurements of the diffusivity of sterically 
stabilized silica spheres (with a = 0.021 pm) dispersed in cyclohexane made by 
Kops-Werkhoven & Fijnaut (1981) give 1.3T0.2 for the coefficient of q5 in (5.4); 
however, a close comparison with the theoretical value is not possible in this case 
without an estimate of the effective value of u for sterically stabilized particles. 

Gradient diffusion in a polydisperse system 
The diffusivity 0, giving the flux of i particles due to the existence of a spatial 
gradient of concentration of j particles is of the form (1.17), and we need to be able 
to find the values of the virial coefficient /3#, and the bulk mobility coefficients 
&,( = S&) and Kl,( = Sl,). For & we have, from (2.9), 

where 
ut3 = 3 p { exp (-2) - i} s2 ds. 

Again we note that, since the pair-distribution function for i and j particles has the 
Maxwell-Boltzmann form (although to a different degree of approximation, in a 
polydisperse system, as we saw in $3), a,,+, can be interpreted as the mean number 
of j particles to be found within a sphere of radius R( 9 a, +a,) centred on a given 
i particle, minus the number in a dispersion with the same concentration and Gf, = 0. 
The coefficient & can be calculated when the potentials of the force exerted between 
two spheres of the same species (i = j) and between two spheres of different species 
(i 9 j) are known. 

The sedimentation coefficients S& and Sl, are given by (3.5)-(3.9), and likewise can 
be evaluated when @$, (s) is given. This is a much larger computational task, however, 
because the differential equation for the pair-distribution function - more specifically, 
for the perturbation of the Maxwell-Boltzmann form of the pair-distribution 
function, as described in the Appendix - must first be solved. Batchelor & Wen (1982) 
have made this calculation of Si, and Si, for the case of two spheres of the same size 
(the i and j species being distinguished by a difference in some other particle 
property), and for the simplified form of interparticle force potential described earlier 
in this section, and we shall use their results here to get a general impression of the 
effect of the interparticle force on the diffusivity. It was assumed that the interparticle 
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a = 0.1 pm a = 0.5 pm a = l p m  a = 2 p m  

5, a Kii Klj a Ki, KY, a Kij KZj a Ki, Kli 
- 2.39 -1.03 -4.44 0.008 - 

- - - - - 3.79 -0.86 -3.98 0.96 -1.42 -4.70 0.010 - 
0.012 - - - 6.09 -0.55 -3.25 1.79 -1.30 -4.44 0.54 -1.50 -4.81 
0.014 - - - 3.26 -1.09 -3.99 1.10 -1.42 -4.63 0.34 -1.53 -4.86 
0.016 13.23 0.47 -1.07 2.11 -1.28 -4.32 0.75 -1.48 -4.73 0.22 -1.55 -4.90 
0.018 8.68 -0.45 -2.21 1.51 -1.40 -4.48 0.54 -1.52 -4.79 0.12 -1.57 -4.93 
0.020 6.44 -0.68 -3.00 1.15 -1.44 -4.60 0.39 -1.54 -4.84 0.05 -1.58 -4.95 
0.025 3.63 -1.22 -3.73 0.63 -1.51 -4.76 0.15 -1.57 -4.91 -0.08 -1.60 -4.99 
0.030 2.49 -1.35 -4.11 0.35 -1.56 -4.84 -0.01 -1.59 -4.96 -0.19 -1.61 -5.03 
0.040 1.32 -1.50 -4.47 -0.01 -1.60 -4.95 -0.25 -1.62 -5.04 -0.37 -1.63 -5.08 
0.050 0.70 -1.57 -4.68 -0.26 -1.63 -5.04 -0.43 -1.64 -5.10 -0.52 -1.65 -5.14 
0.060 - -1.61 -4.83 - -1.65 -5.11 - -1.66 -5.16 - -1.66 -5.19 

-0.81 - 0.070 -0.05 - - . -0.65 - - -0.76 - - - 

0.080 - -1.65 -5.05 - -1.68 -5.24 - -1.68 -5.28 - -1.68 -5.29 
0.100 -0.80 -1.68 -5.23 -1.14 -1.70 -5.36 -1.20 -1.70 -5.39 -1.23 -1.70 -5.40 
0.120 - -1.70 -5.39 - -1.71 -5.48 - -1.71 -5.50 - -1.71 -5.51 
0.150 -1.78 -1.72 -5.61 -1.90 -1.73 -5.66 -1.92 -1.73 -5.67 -1.93 -1.73 -5.67 
0.200 -2.65 -1.75 -5.96 -2.65 -1.75 -5.96 -2.65 -1.75 -5.96 -2.65 -1.75 -5.96 

- - - - - - - 

TABLE 2. Values of the parameter a measuring the number of close pairs of particles (see (5.2) and 
(5.8)) and of the bulk mobility coefficients Kij ( = S&) and Klj ( = SG), for a dispersion of two species 
of spherical particle of the same size (a, = aj, = a)  which exert a force on each other. 5, is the 
parameter in the expression for the interparticle force potential that measures the position of a 
high Coulomb barrier around each sphere of both species. At larger sphere separations than (2 +to)  a 
the interparticle force is a van der Waals attraction; see ( 5 4 ,  (5.6) and (5.7). 

force potential is numerically the same function of s for an i and a j  sphere as for 
two i spheres. Batchelor & Wen gave reasons for concluding that the effect of the 
interparticle force on the functions &'(s) and Q b ( s ) ,  which represent the perturbation 
about the Maxwell-Boltzmann form of the pair-distribution function, is small ; and 
they took the values of these functions, which occur in the expressions for Sij"(I) and 
~ S i j " ( ~ )  (see (3.8) and (3.9)), to be the same as for the case Qtj = 0. 

Reference should be made to Batchelor & Wen (1982) for the calculated values of 
the separate contributions to Sij and S& represented by (3.6), (3.7), (3.8) and (3.9). 
Table 2 shows the resulting values of Sij (or Ki,) and 8:' (or K i j )  for a range of values 
of to, measuring the location of the high Coulomb barrier, and for four values of the 
common sphere radius a. 

The quantity aij in this case in which Qij(s) is assumed to be the same when i +j 
as when i = j is of course identical with a (see (5.2)), the values of which also are given 
in table 2. Note also that for this case h = 1 there is the identity 

a! 

With just the two species of particle, and ai = ai, the expression (1.18) for the 
diagonal element of the diffusivity matrix giving the flux of i particles becomes 

Dii =Dz(o){l+(p+S)q5i+Ki,q5j} 

= Die) { 1 + (1.45 - 0.564 q5i + Klj $ j } ,  (5.10) 



170 G. K .  Batchelor 

-4 I I I I I I I I I 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 
€0 

FIGURE 2. The monodisperse diffusivity coefficient p+S ( x 1.45-0.56a) as a function of the 
parameter &,, specifying the location of the high Coulomb barrier surrounding each sphere; and Kij 
as a function of [,, for a dispersion of i andj  spheres of the same size (A = 1 ) .  For the dependence 
on the diffusivity on Kii see (5.10), (5.11) and (5.12). 

and the non-diagonal element given by (1.19) becomes 

Dij = Di”$g(p+K&) = 06’)$i(l.45-00.56a--~j). (5.11) 
( i * 3 )  

With the aid of table 2 for the values of a and of Klj and Klj,  both elements of the 
diffusivity matrix can be found numerically. The coefficients of q5{ and $ j  in (5.10) 
are shown in figure 2 ;  and the coefficient of $i in (5.11) is the difference between these 
two plotted quantities. The value of each coefficient for @ij = 0 is shown for 
comparison, from which it appears that the effect of the interparticle force is 
significant, although not dominant, just as in the case of a monodisperse system. The 
opposing effects of van der Waals attraction and Coulomb repulsion cancel 
approximately when to lies between 0.04 and 0.07 for sphere radii in the range 
0.1-2.0 pm. 

The case of an i-type tracer particle, labelled in some way, diffusing in a dispersion 
of spherical particles of the same size with volume fraction q5* corresponds to  qh-.O 
in (5.10) and (5.11). The diffusivity of the tracer particle is thus 

Dig = Die) (1  + Kij $j ), Di - 0, (5.12) 

and the numerical value of Kij is given in figure 2. The value of K& differs appreciably 
from its value for Gij = 0 (viz. Kij = - 1.56) only for quite small values of to, smaller 
than about 0.025. 

(%*I) - 
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6. Other work on concentration-dependent diffusivities 
There are many published papers on the first-order dependence of the diffusivity 

on concentration for particles in a monodisperse system, and a few which attempt 
to extend the analysis to particular cases of a polydisperse system. So far as I know, 
no other writers have chosen to exploit the exact expressions (1.3) and (1.13) for the 
diffusivity together with the virial expansions of the chemical potential of the 
particles and the bulk mobility of the particles. This approach linking diffusion with 
sedimentation analytically yielded the first correct deduction of the diffusivity of 
monodisperse particles (and by correct I mean analytically correct, not simply with 
improved numerical accuracy of the hydrodynamic functions) and i t  has now made 
possible a set of numerical results for polydisperse systems which go far beyond what 
has been found by other methods. The resolution of the problem into two component 
parts, one the virial expansion of the chemical potential, which gives the concentration 
dependence of the thermodynamic force driving the particles down the concentration 
gradient and which is known already from text-books on statistical mechanics, and 
the other the virial expansion of the bulk mobility, which is an essentially 
hydrodynamic quantity giving the response of the particles to applied forces, seems 
to me to be physically clear and to provide a convenient frame-work for numerical 
calculation. 

Other researchers have mostly chosen to use complex and sophisticated techniques 
from statistical mechanics which blur the division of the problem into the above two 
parts. This preference for methods developed in statistical mechanics may be a 
reflection of the theoretical physics background of the authors; and i t  may also arise 
from their wish to obtain information about the displacement of marked particles 
over a wide range of times after being at  specified positions in the dispersion, such 
information being relevant to  observations of the light scattered from particles and 
not obviously obtainable from the approach I have adopted. 

Felderhof (1978) gives a brief review of the contributions to  the calculation of the 
diffusivity of a monodisperse system of spherical particles up to that date, and he 
notes the reasons why the various published results differ analytically,and numerically. 
Felderhof also shows how the result (1.8) for ‘hard’ spheres can be recovered 
approximately (the difference being due to Felderhof s use of an expansion of the 
two-sphere mobility functions in inverse powers of the separation of the two spheres 
in place of the more accurate numerical solution of the two-sphere flow field) from 
a consideration of the Smoluchowski equation for the joint probability density of the 
positions of a group of N particles. 

The development of the experimental technique of photon correlation spectroscopy 
(the photons being scattered from light incident on particles) has stimulated several 
very recent theoretical investigations of the diffusion of tracer particles in a dispersion 
of other particles of the same size (Hanna, Hess & Klein 1982 ; Jones & Burfield 1982 ; 
Pusey & Tough 1982a,b). Tracer diffusion can be regarded as a special case of 
diffusion in a polydisperse system even when at = ai (in which case the term 
self-diffusion is also appropriate) as we have noted. Much of the analysis in these 
papers is concerned with the dependence of the statistical properties of the displace- 
ment of a tracer particle on the time t measured from the instant of its release at 
a specified point. 

Now, a t  values o f t  such that 
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where the left-hand member of the inequality is the Brownian relaxation time and 
the right-hand member is a measure of the time required for the tracer particle to 
diffuse over a distance comparable with the spacing of the passive j-particles, the 
velocity of the tracer particle is a stationary function of time and half the rate of 
increase of mean-square displacement of the particle defines a diffusivity. This 
diffusivity depends on the configuration of nearby j-spheres (actually on the position 
of the nearest neighbour only in our case of a dilute dispersion), which is constant 
a t  times satisfying (6.1), and so is not isotropic. However, the average of the 
diffusivity over all positions of the nearest j-sphere, weighted with an appropriate 
pair-distribution function, is a more meaningful quantity, and is referred t o  as the 
‘short-time’ tracer diffusivity by Pusey & Tough (1982a, b)  and other authors 
concerned with the interpretation of light-scattering measurements. It seems to be 
agreed that the pair-distribution function that corresponds to the conditions of the 
experiments has the Maxwell-Boltzmann form, as i t  would do if the tracer particle 
was part of an equilibrium system at the instant of ‘release’ ( t  = 0). 

At times t comparable with ( U # - ~ ) ~ / D ~ * ) ,  the velocity of the tracer particle is no 
longer a stationary random function of time because the particle is moving into 
different surroundings. However, when 

t p (a$-f)Z/Di’J) (6.2) 

the particle has had many encounters with j-spheres and its velocity is again a 
stationary random function of position and again half the rate of increase of 
mean-square displacement defines a diffusivity. This is the ‘long-time ’ diffusivity in 
the terminology of Pusey & Tough (1982a, b )  and Jones & Burfield (1982), whereas 
in my formulation, which presupposes that the pair-distribution function and other 
parameters of the structure of the dispersion have reached a steady state, i t  is simply 
the tracer diffusivity. 

We may thus compare the results obtained here for the tracer diffusivity (with 
at = a j )  with the diffusivity found by these authors for what they designate as ‘long 
times ’, when ‘memory effects’ are significant. 

I do not understand the cited papers well enough to  be able to compare their 
analytical results with mine, and unfortunately the approximations made in the 
hydrodynamic data by most of the authors obscures a comparison of the numerical 
end-products. Jones & Burfield (1  982) appreciated the importance of moderately 
accurate hydrodynamic data, although even they used a small number of terms of 
series expansions of the two-sphere mobility functions which would be significantly 
in error at nearly-touching positions of the two spheres. Jones & Burfield report 
finding that a tracer sphere of radius at, in a dispersion of ‘hard ’ j-spheres for which 
ai = at, a t  ‘long times’ after release has the scalar diffusivity 

Die) { 1 + (-  C-0.08) $j}, 

where C is the integral in the expression for SijG) in (4.3) with h = 1 .  The tracer 
diffusivity found here on the other hand (see (4.10) and (4.2)) is Dp)(  1 + K&$$), where 

(6.3) 23 23 

when h = 1 .  There is thus agreement on the appearance of the integral C (for which 
tJones & Burfield adopt the approximate value 1.73, instead of the more accurate 
value 1.83 given in my 1976 paper, but that  is not relevant to our comparison). 
According to table 1 the value of SJB) for h = 1 is 0.27. This represents in my 
formulation the contribution due to the non-equilibrium form of the pair-distribution 

K!.  = -C+S!(B) 
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function, whereas Jones & Burfield find -0.08 for the contribution due to what they 
term ‘memory effects’. The difference between 0.27 and -0.08 is not large, and might 
arise from the less accurate hydrodynamic data used by Jones & Burfield. The 
positive sign of S$”) in my formulation is a consequence of the fact that the smoothing 
of the pair-distribution function by Brownian motion assists the tracer particle to 
move down the concentration (or probability) gradient, as explained in the context 
of the sedimentation problem (Batchelor & Wen 1982). 

I n  my first brief investigation of diffusion in a polydisperse system (Batchelor 1976) 
I overlooked the fact that the non-zero relative velocity of two interacting spheres 
of different species caused by different thermodynamic forces acting on the two 
spheres (the relative velocity being non-zero even when the two spheres are of the 
same size), and the resulting small non-zero value of the PBclet number for the relative 
motion, lead to a small departure from the equilibrium form of the pair-distribution 
function and thereby to direct contributions of order unity, viz. AS$) and SljB), to the 
bulk mobility coefficient (in ways made clear in my paper on sedimentation, 
Batchelor 1982).t As a consequence of this oversight, I took the pair-distribution 
function to have the equilibrium or Maxwell-Boltzmann form, and so - unwittingly - 
I obtained what is referred to in the recent papers cited above as the ‘short-time’ 
tracer diffusivity. My result in 1976 for the magnitude of the isotropic diffusivity of 
a tracer particle in a dispersion of j-spheres of the same size was 

Die) ( 1 - C$j), 
where C is the integral referred to in (6.3). This result was wrong for the ‘long-time’ 
tracer diffusivity that I thought I was calculating, but is right for the ‘short-time’ 
tracer diffusivity that other people later calculated. 

No quantitative results for diffusivities in a polydisperse system other than the 
above-mentioned results for tracer diffusion in a dispersion of particles of the same 
size as the tracer particle appear to have been published. 

Ackerson (1978), Jones & Burfield (1982), Pusey & Tough (1982a, b )  and Hanna 
et al. (1982) have all noted that, in their formulations of diffusion problems, ‘memory 
effects’, or differences between short and long time behaviour, do not arise in the 
calculation of the gradient (or ‘ collective ’, as they term it) diffusivity in a monodisperse 
system. I am not sure’ what meaning can be given to short-time gradient diffusion 
in a monodisperse system, since the choice of the initial sphere configuration seems 
to be quite arbitrary, but if they mean that departures from the equilibrium form 
of the pair-distribution function do not develop I do of course agree. The equivalent 
statement in my formulation is that  the steady-state pair-distribution function has 
the equilibrium form a t  all times, for the reason (not noticed by these authors, so far 
as I can tell) that  two identical spheres moving under the action of equal applied forces 

t Pusey & Tough (1982a, b )  recognized that there must be some error in the value of the tracer 
diffusivity of a ‘hard’ sphere given in my 1976 paper (and that there is an equivalent omission 
in the quite different formulation of Jones 1979), although they were not aware that i t  was an 
oversight which can be, and has now been, made good within the context of my approach. They 
ascribed my error to an assumption stated at the beginning of my paper, viz. that the configuration 
of particles does not change significantly during the time-interval characteristic of the Brownian 
diffusion process. Like Marqusee & Deutch (1980), they supposed that this assumption precludes 
consideration of long-time effects such as the development of a steady-state non-equilibrium 
pair-distribution function as particles move down a spatial gradient of concentration. However, 
this is a misreading of my assumption. As stated explicitly in my paper, I assumed only that the 
particle configuration does not change significantly during the Brownian relaxation time 
(m/6xqa) - a condition which is in fact easily satisfied for particles even as small as lW3 pm in radius 
in water. 
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have zero relative velocity and the P6clet number for their relative motion is zero. 
There is no reason on the other hand to  expect the three-sphere distribution function, 
which is relevant a t  larger concentrations, to  have t’he equilibrium form. 

Appendix. The pair-distribution function in a sedimenting system at small 
Peclet number 

The pair probability density function njp i j ( r )  is defined as the probability that the 
centre of a sphere of speciesj lies within unit volume at position r relative to the centre 
of a sphere of species i .  For a dilute system a t  zero P6clet number p i j ( r )  has the 
equilibrium or Maxwell-Boltzmann form exp ( - @,/kT).  The perturbed-equilibrium 
form a t  small PBclet number was shown (Batchelor 1982) to be 

where the PBclet number ej is defined as in (3.2), q0) and Uf” are the velocities of 
isolated i a n d j  particles to which the forces F $ O )  and 40) are applied, and Q‘, Q” are 
functions of s( = 2r / (a i+a j ) )  and hij(  =aj /a i )  only. This is equivalent to 

Note that the perturbation term is not spherically symmetric. 
p i j ( r )  satisfies a conservation equation containing convection (due to the applied 

and interactive forces) and diffusion terms, and this equation determines Q‘ and Q”. 
In  the paper on sedimentation (Batchelor 1982) the combination Q’+ yiiQ” was 
employed, where yij is the ratio of the reduced densities of the i a n d j  spheres, but 
an equivalent formulation of the equations for Q’ and Q“ which makes no reference 
to particle densities and gravity (and does not involve any assumption of parallelism 
of the applied forces) is 

where G(s)  and H ( s )  are the longitudinal and lateral relative diffusivity functions and 
L’, L and W ,  W bear the same relation to the functions L and W defined in the 
paper as Q‘, Q” bear to Q(=(Q’+y i iQ”) / ( y i jh~ j - l ) ) .  G ,  H ,  L’, L”, W’ and W“ are 
known functions of s( = %/(ai + a j ) )  and A,. The boundary conditions satisfied by Q‘ 
and Q” are GdQ””/ds = 0 at s = 2 and Q‘”’+O as s+ 00. Numerical values of the 
functions Q’(s) (=  - ( Q ) y i j - o )  and 1 )  ( =  (Q)y i , - l )  for various values of 
Aij are given by Batchelor & Wen (1982). 
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